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TECHNICAL NOTE D-748

ANALYSIS OF A FOUR-STATION DOPPLER TRACKING METHOD

USING A SIMPLE CW BEACON

By Clifford L. Fricke and Carl W. L. Watkins

SUMMARY

A Doppler tracking method is presented in which a very small,

simple CWbeacon transmitter is used with four Doppler receiving sta-

tions to obtain the position and velocity of a space research vehicle.

The exact transmitter frequency need not be known, but an initial posi-

tion is required, and Doppler frequencies must be measured with extreme

accuracy. The errors in the system are analyzed and general formulas

are derived for position and velocity errors. The proper location of

receiving stations is discussed, a rule for avoiding infinite errors is

given, and error charts for ideal station configurations are presented.

The effect of the index of refraction is also investigated. The system

is capable of determining transmitter position within 1,000 feet at a

range of 200 miles.

INTRODUCTI ON

The accurate determination of the position and velocity of a small

research vehicle is an important problem. Many elaborate methods for

making this determination have been developed, most of which require

either high-powered, complicated, and expensive ground equipment or

complicated airborne equipment (ref. 1). There is need for a tracking

system which uses extremely small simple equipment in the vehicle and

moderately simple inexpensive equipment on the ground. Such a system

is afforded by transmitting a low-power CW signal from a radio beacon

in the vehicle and receiving Doppler signals at several ground stations.

The simplest Doppler system of this type requires a very stable

transmitter and three receiving stations. The disadvantage of this

method is the precision with which the transmitter frequency must be

known. By using four stations, the problem becomes more involved, but

it is possible to find the trajectory even though the transmitter fre-

quency is not known precisely or even if it shifts. In this investi-

gation the problem of finding the position by using four stations is

solved. Position-error formulas are derived and optimum station



locations to minimize these errors are discussed. The accuracies
required in measuring Doppler frequencies and the effect of the index
of refraction are discussed. Also, the velocity and errors in velocity
are found.

SYMBOLS

A,B,C Doppler receiving stations

Ax,Bx, Cx;Ay, cofactors of the elements ax, bx, Cx; ay, by,
By,Cy; . Cy; . . respectively, in determinant E

a, b, c

C o

C s

Xa Ya

D= xb Yb

Xc Yc

distance from stations A, B, and C, respectively, to origin

vector position of stations A, B, and C, respectively

_sa _sb _sc _sa _sb _sc
-- • , (seeeq (28))_x ' _x ' _x ' By y y

probable error in Xa_ Xb, or Xc; Ya, Yb' or Yc;

when these probable errors are all equal

velocity of propagation of radio waves in free space

velocity of propagation at source

S a

sb

S c
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E _

ax ay az

b x by b z

cx Cy c z

(see eq. (A2))

vapor pressure, mb

f transmitter frequency
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fa, fb, fc, fo received frequencies at stations A, B, C, and O,

respectively

2_f error in f

_f probable error in (fo - fa), (fo - fb), or (fo - fc)when

these probable errors are all equal

d(fo- fa),d(fo- fb),d(fo - fc) differential of (or error in)

(fo- fa), (fo - fb), and (fo - fc)

Ks_Kb,Kc quantities defined in eqs. (16), (17), and (18), respectively

N

length of sides in rectangular configuration

electron concentration, per cm 3

n index of refraction at transmitter

0 station 0 at the origin

P atmospheric pressure, mb

r-r o distance from origin to transmitter or distance from sta-

tion 0 to transmitter

r

dr

vector position of transmitter relative to origin

differential of vector position of transmitter

dr probable error in position of transmitter

ra, rb, rc

r a, rb, rc

distance from stations A, B, and C, respectively, to trans-

mitter (see eqs. (i0), (ii), and (12))

vector position of transmitter relative to stations A, B,

and C, respectively

rao, rbo, rco, roo initial distances from stations A, B, C, and O,

respectively, to transmitter at time to

_kr a error in ra

S location of source (transmitter)



Sa,Sb,Sc

Sa_ SbJ s C

ds a,ds b, ds c

US

us a, _sb, os c

T

t

to

va,vb, vc

Vx, Vy, v z

qVx, qVy, Gv z

Xa, Ya_ Xb, Yb;

Xc, Yc

x, y, z

dx, dy, dz

O'X, o'y, OZ

Xa' Ya' Za{

Xb, Yb' Zb

dx a ,dY a, dZa;

dXb, dYb, dzb •

cofactors of Sa,

determinant D

range differences,

respectively

differentials of (or errors in)

respectively

probable error in sa, Sb, or sc

errors are all equal

probable error in Sa, Sb, and

temperature, OK

time

initial time

Sb, and Sc, respectively, in

ra - r (eq. (2_)), rb - r, and rc - r,

Sa, Sb, and Scj

when these probable

Sc, respectively

radial components of velocity of transmitter (source) rela-

tive to stations A, B, and C, respectively

x, y, and z components, respectively, of transmitter velocity

probable error in transmitter velocity

probable errors in Vx, Vy, and Vz, respectively

cofactors of Xa, Ya; Xb, Yb; Xc_ Yc in determinant D

coordinates of transmitter

differentials of (or error in) x, y, and z, respectively

probable error in x_ y, and z, respectively

coordinates of stations A, B, . •

differentials of (or errors in) Xa, Ya, Za;

Xb, Yb, Zb; '
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_Xa,_Ya__za; probable errors in Xa_ Ya, Za; Xb, Yb, Zb;
_Xb,_Yb__Zb;

6 propagation error factor (see eq. (43))

c error factor_ ratio of probable error in r to probable
error in range differences, _r/as

q per unit error in index of refraction

wavelength of transmitter signal at source

PRELIMINARYANALYSIS

A brief analysis of the three-station method is presented. This
analysis showsthat a range measurementdepends on the transmitter fre-
quency. This frequency dependencecan be eliminated by measuring range
differences between stations. Since at least three range differences
or four stations are required, an analysis of the four-station method
is presented.

Three-Station Method

A nonrelativistic approximation of the Doppler equation for the
frequency observed by a receiver at a fixed point A is given by

fa=f -_s

where

the point A, and cs
Thus,

or

(i)

va is the radial velocity component of the source relative to

is the velocity of propagation at the source.

Cs( f- fa)Va= 7 (2)

c° (f- fa)Va = n-_

va fa)
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If the initial position of the source is known, the subsequent
radial distance (range) from point A can be determined from

tra = rao + h(f - fa)dt
to

With two receiving stations A and B, the ranges ra and rb are

then known. Figure i illustrates that the intersection of two spheres

with radii ra and rb locate the transmitter somewhere along a circle;

hence, an additional station C (located off the axis A, B) is required

to locate the transmitter. (The intersection of the sphere C with the

circle actually gives two positions, but in a practical case one of

these may be disregarded since it is beneath the surface of the earth.)

In practice the received frequencies can be measured very accurately,

but the transmitter frequency f cannot be known exactly because it may

shift during flight. It is difficult to keep the frequency of a very

small transmitter constant under the extreme environment encountered in

a rocket-propelled vehicle. From equation (5) it can be seen that an

error Af in f gives an error in ra of

tZkra _ h Af dt

to

(6)

As an illustration of the magnitudes involved, consider a typical
case where f = 200 megacycles (h _ 5 feet) with a constant error of

i00 cycles per second. Over a time interval of 300 seconds the error

in ra would be 150,000 feet.
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Four-Station Method

The error due to transmitter-frequency change may be eliminated by

measuring the frequency difference between two Doppler receiving sta-

tions. Let 0 represent an additional receiving station located at

the origin; the range difference is

s a = ra - ro

t= rao - roo + h(fo - fa) dt

to

(7)
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There will be a small error in h since f is not known 9 but f

differs from fo only by the amount of the Doppler shift which is less

than 5 kilocycles for a transmitter speed of 25,000 feet/sec. Thus,

if h is based on fo the error in sa is less than 0.0025 percent

(or less than 26 feet at a range difference of 200 miles).

There may also be a small error in sa because of the difference

in time it takes for the signal to reach different receivers. If the

receiving stations are 200 miles apart, the maximum time difference is

only i millisecond. If the velocity of the beacon suddenly changed by

25,000 ft/sec, which gives a 5-kilocycle change in Doppler signal, the

maximum error in sa would be only 25 feet. (Both these errors can

be eliminated, if desired, once the position and velocity of the trans-

mitter are determined.) Thus, by measuring the difference in frequency

between two stations_ the range differences can be determined without

knowing the transmitter frequency.

If it is assumed that the range differences Sa, Sb, and sc can

be measured accurately, it can be seen that four receiving stations are

required to locate the transmitter. In figure 2 receiving stations are

shown at A, B, C, and 0, with the source at S. A sphere with radius ro

is illustrated with S as the center. Since the distance from S

to A is ra, then

ra = (r a - ro)+ ro

= sa + rO (8)

Hence, the sphere with radius sa and center A is shown to be tangent

to the sphere with center S. Similarly, spheres with radii sb and

sc are shown around centers B and C. Now, given the range differ-

ences Sa, Sb, and so, S is located at the center of the sphere

which is tangent to the spheres A, B, and C and goes through the point 0.

A geometric solution is thus obtained.

FOUR-STATION SOLUTION

The geometrical solution Just presented is of little value in

obtaining the actual solution. This solution may be obtained by writing

the equations for the four ranges (fig. 3) as

r2 = x2 + y2 + z2 (9)
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ra 2 = (x - Xa)2 + (y- ya) 2 + (z - Za)2

rb2=(x Xb)2+(y yb)2+ (z zb)2

rc 2 = (x- Xc)2 + (y- yc) 2 + (z - Zc) 2

Subtracting equation (9) from equation (i0) yields

ra2 - r 2 = -2XaX - 2YaY - 2ZaZ + Xa2 + ya 2 + Za2

With the substitutions

a2 = Xa 2 + ya 2 + Za2

(lO)

(ll)

(12)

(13)

(14)

L
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ra2 - r2 = (r a + r)(r a - r)

= (2r + Sa)S a

2
: sa + 2rs a (15)

equation (13) becomes

a2 _ Sa2 - 2ZaZ

XaX + YaY + Sat = 2 = Ka (16)

Similarly,

XbX + Yb y + sbr =

b 2 _ Sb2 _ 2ZbZ

2
=Kb (17)

c2 _ Sc2 _ 2zcz

xcx + YcY + Scr = 2 = Kc (18)

In equations (16) to (18) a, Xa, Ya, Za; b, Xb, . are

constants which depend on station locations; Sa, Sb, and sc are

known data from the Doppler stations; x, y, and r are unknowns to

be solved. Actually z is also an unknown, but since Za, Zb, and zc

are usually small, an approximate value may be assumed in order to obtain

a first approximation of x, y, and r.
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The solution is then (using cofactors of determinant D)

KaX a + KbX b + KcX c
x = (19)

D

KaY a + KbY b + KcY c

Y : D (2o)
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KaSa + KbS b + KcS c
r = (21)

D

z : _r2 - x 2 - y2 (22)

The computed value of z may be compared with the assumed value, and

if it is different it may be inserted in equations (16), (17), and (18)

to find more exact values of x, y, and z. The process converges

rapidly. In several actual cases where the first assumed value of z

was far from the actual value, the process converged in fewer than six

iterations. In a typical case in which z was actually 500,000 feet

but was assumed to be zero_ the errors in z for successive iterations

were 32,200, 2,100, 132, and 8 feet.

ERRORS IN POSITION

This four-station solution does not always give the transmitter

position. For example, consider four stations located at the corners

of a square, with the transmitter along a perpendicular through the

center of the square. No matter where the transmitter is located along

this perpendicular, r = ra = rb = r c and, hence, sa = sb = sc = O;

thus, the position is indeterminate and large errors occur in the vicin-

ity of the perpendicular. The station configuration has a pronounced
effect on the errors.

In order to investigate the errors it will be convenient to derive

an error factor c defined as the ratio of the probable error in the

position determination to the probable error in the range-difference

measurements. The error factor will be examined for conditions which

cause infinite error, and error-factor contour plots of transmitter

position will be given for various station configurations. The posi-

tion error depends on range-difference measurements (which in turn

depend on frequency measurements and propagation effects) and on measure-

ments of station positions. All these errors will be discussed herein.
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Errors Due to Range-Difference Measurements

Derivation of error factor.- Of primary importance is the error in

position due to errors in the measurement of the three range differences

Sa, Sb, and sc. The quantity

sa = ra - r

= _x- Xa)2 + (y- ya)2 + (z- Za)2- _x2 + y2 + z2 (23)

depends on the transmitter coordinates and the station locations.

Consider the variation dsa in sa caused by the variations dx_

dy_ and dz. Thus_

8s a 8sa bs a
ds a - dx + _ dy + _ dz (24)

bx _y bz

For simplicity this equation may be written in the form

ds a = ax dx + ay dy + az dz (25)

Similarly,

dsb = bx dx + by dy + b z dz (26)

and

ds c = cx dx + Cy dy + c z dz (27)

where

x - x a x

ra r

x 1
r a x

(28)

With the other coefficients similar in form.
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Then, the deviations in x, y_ and z due to dsa, dSb, and ds c

are given by solving equations (25), (26), and (27) as follows:

= __ __ Cxdx Ax ds a + Bx dsb + -- ds c
E E E

(29)
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Cy
Ay By dsb + __ dSc

dy = -_- ds a + _- E

C Z
dz Az Bz dsb + -- ds c:TdSa+_ - E

where Ax, By, and so forth are the cofactors of ax,

in the determinant E.

(3o)

(31)

by, and so forth

The probable errors in the range differences may be expected to be

equal but uncorrelated because each station is similar but independent.

Under this assumption let as be the probable error in any one of the

range differences; thus,

_s = asa = _sb = _sc (32)

The probable errors in the position coordinates are then given by

(_x)2: (Ax2+ _2 + cx2)(os)2
E2 (33)

= + + Cy 2 E2 (34)
(_)2 (_2 By2 )(_12

(_)2 : (A2 + B2 + Cz2) (_s)2E2 (3_)

Now, since

IEI : + +
the probable error in the vector r is given by

or : _(=)2 + (_)2 + (_z)2

(36)

(37)
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Thus,

_r
6 -- --

_s

= i_IA 2 •
_ x + Bx 2 + Cx 2 + Ay 2 ÷ By 2 + CY 2 + Az 2 + Bz 2 + Cz 2 (38)

This error factor depends only on the station configuration and

the transmitter position.

Infinite errors - triangle rule.- Infinite errors occur whenever E,

the demoninator of the error factor_ is zero. For the special case when

all the receivers are in the x-y plane (this is the only case which will

be considered) appendix A shows that infinite error occurs whenever the

transmitter is in such a position that either z = 0 (i.e., in the

x-y plane) or D = 0.

In appendix B and figure 4 the station configurations which allow

D = 0 are studied; from this study the following triangle rule of infi-
nite error is established: Infinite error cannot occur (except in the

x-y plane) if any one station lies within or on the triangle formed by

lines joining the other three stations (fig. 5); if no station lies

within such a triangle, then infinite error exists.

As an illustration, the special case of a rectangular configuration

(fig. 6) is considered in appendix C, and it is shown that infinite error

occurs on the two vertical planes which are perpendicular bisectors of

the sides of the rectangle. For other more intricate configurations,

the determination of the locations in which infinite error occurs becomes

much more complex.

Error factors for various confisurations.- In addition to knowing

the existence of infinite errors, it is important to know the actual

magnitude of the errors. It may be surmised from the infinite-error

analysis that a desirable station configuration would occur when one

station is at the center of an equilateral triangle formed by the other

three. This equilateral-triangle configuration was analyzed by computing

the error factor from equation (38). (The receiving stations have been

assumed to be located on the earth's surface rather than on a flat plane.)

The results are shown in figure 7 in the form of contour plots of con-

stant error factor at various altitudes. This configuration is an ideal

one for general applications where the azimuth angle may not be known

in advance.

Another important configuration is the isosceles triangle with one

station at the midpoint of the base. Figure 8 shows contour plots for

this case (the earth's curvature is again taken into account). It may be

L
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noticed that, in general, the overall error factor has not been improved.

However, in one direction (over the apex of the triangle) the error fac-

tor has been improved at the expense of making the error factor in other

directions greater. This configuration is useful when the approximate

azimuth direction is known in advance. A check on the error-factor

formula (eq. (38)) was made by substituting (in eqs. (19) to (22)) values

for Sa, Sb, and sc which were in error by i00 feet. This check was

made for the isosceles-triangle configuration at an altitude of

500,000 feet. The results checked within 0.2 percent in the range

covered along the axis 20 ° counterclockwise from station A (fig. 8(c)).

One particular configuration for use at NASA Wallops Station

required land stations which were readily accessible. The stations were

placed at Wallops Island, Va.; Cape Hatteras, N.C.; Langley Field, Va.;

and Dover, Del. Error contour plots for this case are shown in figure 9-

One azimuth direction, as expected, gives infinite error, but in the

direction of the predicted transmitter position (145 ° clockwise from

north), the error factor is acceptable.

Frequency accuracy.- An examination of the contour plots indicates

that an error factor of about i0 can be achieved. If position data

within i, 000 feet are required, _s must be within i00 feet. This

accuracy requires the probable error in the total number of cycles

counted to be within 20 cycles (h = 5). If this count were over a

period of 300 seconds, the frequency accuracy required would 0.07 cycle

per second, an accuracy of i part in 3 x 109 .

It is feasible to use local oscillators which have stabilities of

i part in 109 drift per day at each station. If the oscillators are

checked against each other within 8 hours, the proper accuracy could

be obtained. A desirable method of calibration is to check all stations

simultaneously against a common source (whose frequency need not be

known exactly).

Propagation errors.- The index of refraction may vary and cause
errors. In the troposphere the index changes because of air density

variations according to (ref. 2)

n = i + _77"6 (p + _4810e)10- 6 (39)

From the ground up to 50,000 feet, the index varies from about 1.0003

to 1.0000. The index may be calculated from radiosonde data of pressure,

temperature, and humidity as a function of altitude.



In the ionosphere the index varies because of ionization and
depends on the electron density and frequency (ref. 3) as follows
(where f is measured in kilocycles):

n = Jl 81N (40)
V f2

The electron density becomes important at an altitude of about

200,000 feet; at 1 x lO6 feet it attains a maximum density of the order

of 1.5 x lO 6 per cubic centimeter (ref. 4). Thus, at 200 megacycles

the index varies from 1.O000 to 0.9985 between 200,000 and 1 x lO 6 feet.

It appears that a frequency of at least 400 megacycles should be used,

in which case the variation would be only 0.0004. The index may be cal-

culated by using electron density measurements from rocket soundings.

The effect of the index of refraction on position determination

can be seen from equation (7) where h = Co/nf. However, the error does

not enter in the same manner as the frequency error in (fo - fa) because

the errors in Sa, Sb, and sc due to errors in n are correlated.

If the simplifying assumption is made that the per unit error in n is

a constant _, and if the initial range difference is neglected, then

the per unit error in Sa, Sb, and sc is _ and the error in x is

(from eq. (29)) as follows:

Ax Bx Cx
dx = _- 4sa + _- 4sb + _- 4sc (4l)
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The probable error in position is then

_ _(AxSa + BxSb +CxSc) 2 + (Aysa + BySb +CySc) 2 + (Azsa+ BzSb + Czsc) 2 (42)(_r=

The propagation-error factor may be defined as follows:

_r

T1 xlO 6

10-6 I(E AxSa + BxSb + cxsc) 2 + (Azsa+ BzSb +CzSc) 2+( sa+BySb+CySc)2
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Contour plots of this error factor are shown in figure i0 for the

equilateral-triangle configuration. If the error in n were a constant

value of 0.O001, and an error factor 5 of 7 could be achieved, then

gr would equal 700 feet.

The variation of the index of refraction with altitude can also

cause propagation in a curved path, which will produce errors. This

effect is especially important at low elevation angles; however, it is

not investigated herein.

Station-Location Errors

Another aspect of the problem is the accuracy of measuring the

location of the receiving stations. Appendix D shows that the ratio of

probable error in missile position to the probable error in station

location is equal to the error factor _ or

Gr
- c (44)

_a

This result may also be seen quite simply from an examination of fig-

ure 3- Suppose station A were moved a small distance. It is seen that

a change in the vector _ (vector position of A) is the same as a

change in the vector ra. Hence, a change in a must have the same

effect as a change in ra and, consequently, in sa.

If the error in station location were 5 feet and if the error fac-

tor were as great as 50, the error in transmitter location would be

only 250 feet.

VELOCITY DETERMINATIONS

The velocity of the transmitter may be obtained in two different

ways. In the most direct method the velocity components are obtained

from the x, y, and z positions as a function time. In another method

the Doppler frequencies are used in conjunction with the transmitter

location. Appendix E shows that the velocity components are

Vx = E (fo- fa) + Bx(fo- fb) + Cx(fo- fc (45)

Vy =
(46)
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 .(fo-fa)+Bz( o-fb)+ C ,(fo-fc (47)

where Ax, By, and so forth depend on receiving-station configuration

and transmitter location. Actually, the two methods differ only by the

errors introduced in the data-reduction process and, hence, preference

for one method will be determined by this process.

ERRORS IN VELOCITY

If it is assumed that the position error is negligible, then the

probable error in velocity (see appendix F) is given by

= _c_f (48)

The instantaneous frequency could not be expected to be as accurate

as the integrated frequency. If an accuracy of 0.5 cycle per second

can be obtained, then velocity data would be within (5)(10)(0.5) = 25 feet

per second.
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CONCLUSIONS

An analysis has shown that a four-station Doppler system is capable

of giving position data on a research vehicle to within 1,000 feet

(except at low elevation angles) by using a simple radio beacon trans-

mitter whose frequency need not be known accurately. However, Doppler

frequencies must be measured very accurately and variations of the index

of refraction should be taken into account for best accuracy.

Errors for the equilateral- and isosceles-triangle configurations

may be found from the contour plots given; for other configurations,

formulas may be used. Infinite errors may be avoided by locating one

station inside the triangle formed by the other three stations.

The equilateral-triangle configuration with one station in the center

is the best configuration for general use, although the isosceles-

triangle configuration with a station on the midpoint of the base will

give better results in a specific direction. Other configurations may

be satisfactory but should be checked with the error formulas.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., January 10, 1961.
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APPENDIX A

EXISTENCE OF INFINITE ERRORS

If all stations are in the x-y plane_ it will be shown that infinite

error occurs when D = O. Infinite error occurs whenever E_ in equa-

tion (38), is zero. The determinant E is given by

E

ax ay az

bx by bz

iCx Cy cz

_s a

ax

_sb

ax

_s c

raq-

8s a _Sa!

ay az !

_sb _Sb!

8y _z

asc as c

ay az

(A1)

By using equation (28) the following determinant may be obtained:

E

xa?)x

7b x r :

_el f xc rcx r

-

rb y r

Y /i Yc rc

7 c _ y r

ra)z

fr Zb
_ z r

r_( 1 ZCz rC)r

(_)

The next step is to factor x_ y_ and z out of the columns and ra,

rb, and re out of the rows. For the special case when za = zb = zc = 0

(i.e., all stations located in the x-y plane) E becomes

E --

xyz

rarbr c

Xa ra Ya ra rai i i - --
x r y r r

Xb rb Yb rb rb
i i i - --

x r y r r

i Xc rc ! Yc rc i rc
rx r y r

(A3)
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Subtraction of the last column from the first two gives

E __

x&

x

xyz Xb

rarbr c x

x C

x

xa

z xb
rrarbr c

xc

Ya i - r_a
y r

rbYb i-_
y r

Yc i _ _r___
y r

Ya ra - r

Yb rb - r

Yc rc - r

(A4)

(A5)
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E

zD

rrarbr c
(A6)

Thus, infinite error occurs when z = 0 or D = O.
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APPENDIX B

TRIANGLE RULE OF INFINITE ERROR

In order to prove the triangle rule of infinite error 3 a general

triangular configuration of stations A, B, and C lying in a plane (fig. 5)

is assumed 3 with the position of station 0 3 the origin 3 variable with

respect to the triangle. From an investigation of the signs of Sa_ Sb_

and Sc_ it will be shown that if 0 lies in the unshaded regions of

figure 5_ the determinant D cannot be zero and infinite error cannot
exist. When 0 lies in the shaded regions it will be shown that there

exists a surface of transmitter positions which will cause the determi-

nant D to equal zero and give infinite error. A generalization of

figure 5 gives the triangle rule of infinite error which may be stated

as follows: Infinite error cannot occur if any one station lies within

(or on) the triangle formed by lines joining the other three stations;

if no station lies within such a triangle_ then infinite errors exist.

Properties of Sa_

In order to determine the signs of

identity

Sb, and Sc

Sa, Sb, and Sc, consider the

Xa Ya

Xb Yb

Xc Yc

=0 (BI)

which is readily verified (since stations lie in the x-y plane and

za = zb = zc = O) by subtracting from each element in the last column

i times the corresponding element in the first column and j times

the corresponding element in the second column, where i and j are

the unit vectors in the x and y directions_ respectively. Thus_

Sa_+ SbT+ Scg-= 0 (B2)

where
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Sa = xbYc - xcYb (B3)

Sb = XcYb - xbYc

Sc = XaYb - xbYa

(m)

Yb _ Yc and the origin 0 lies on BC, or BC
If Sa = O, then Xb x-_

extended (fig. 5). When Sa > O, point 0 lies on the same side of BC

as point A_ whereas if Sa < O_ point 0 lies on the opposite side of BC.

The signs of Sb and Sc may be determined in the same manner to

obtain the remaining information in figure 5- Note that inside the

triangle Sa_ Sb, and Sc are all positive. On any one side of the

triangle one of these quantities is zero.

The identity (B2) may be written in the alternate form

L

i

2

3
4

S cSb _ _ _ + (_ - _) (B6)

Sa + Sc Sa + Sc

Figure 4 illustrates this identity and shows that if B lies on AC,

Sb

Sa + S c
- 1 (B7)

or

Sa + Sb + Sc = 0 (BS)

However_ if B lies below AC as shown in figures 4 and 5 and if 0

lies in the unshaded region below B_ then

Sb

S a + Sc

>i (B9)

or 3 since Sa and Sc are both negative_

Sa + Sb + Sc > 0 (BIO)
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then

On the other hand, if 0 lies in the shaded region above AC (fig. 5),

Sb < 1 (ml)
Sa + Sc

and since Sa and Sc are both positive,

L

i

2

3
4

Sa + Sb + Sc > 0 (BI2)

In a similar manner, it may be shown that equation (BI2) is true in all

the other regions (except on the extended sides of the triangle where

equation (B8) holds).

Regions of No Infinite Error

It was shown in appendix A that for infinite error the following

condition must exist:

D

Xa Ya ra - r

Xb Yb rb - r

Xc Yc rc - r

= 0 (BIS)

D : Sa(r a - r) + Sb(r b - r) + Sc(r c - r) = 0 (Bl4)

or

Sar a + Sbr b + Scr c = (Sa + Sb + Sc)r (B15)

Identity (B2) may be written

+ +Sc( - -o
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or

Sar a + Sbr b + Sc_ c - _Sa + Sb + Sc)7

Since

lies inside the triangle) it follows that

Sa r_a{ + Sb _{ + Sc{rcl _ (Sa + Sb + Sc){_

Hence, equation (B15) cannot be satisfied (except when ra,

(m7)

Sa, Sb, and Sc are all positive (as they are when station 0

(BIB)

--_ -@

rb, and rc

are parallel at r = =), and infinite error cannot exist when station 0

lies inside the triangle ABC. (This is also true if station 0 lies on

a side of the triangle.)

In the unshaded region below station B (fig. 5) equation (B15) may

be written (in order to emphasize that Sa < 0 and SO < 0)

Sbr b = (Sa + S_ + Sc)r + (-Sa)r a + (-Sb)r b (B19)

and equation (BI7) becomes

_b_ = (Sa + Sb + Sc)_ + (-Sa)r_a + (-Sb)_ (B2o)

Hence,

and no infinite error can exist. Note that in this region station B is

enclosed by the triangle ACO. In a similar manner it can be shown that

infinite error cannot exist in the other unshaded regions.

L

i

2

}
4

Regions of Infinite Error

In order to show that infinite error exists when station 0 lies in

the shaded regions of figure 5, consider D as a function of x, y, and z

(transmitter position). If D(x,y,z) > 0 at some point in space and

less than zero at some other point in space, then D must be zero on some

surface separating these two points (for no matter what path is taken

between the two points, D must go through zero somewhere along this
path) and infinite error must exist. The two points which show this

are the origin 0 and one of the corners of the triangle. Consider the

shaded region to the left of side AB. Then, at the origin r is zero

and (since Sc < 0) equation (B14) becomes
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D(O) = Sar a + Sbr b - (-Sc) rc

and equation (BI7) becomes

Sa_ a + Sb_ : (-Sc)r%

Thus,

and, therefore,

Salrll + Sbl_bl >_-(-Sc)Ir%l

D(0) > 0

At the point A, ra is zero and equation (BI4) becomes

D(A) =-(S a + Sb + Sc) r- (-Sc)rc + Sbrb

Equation (BI7) becomes

%_b=(Sa+% +sc)_+(Sc)r%

Since all coefficients are positive

%1%1_(_+% +so)l;l+(solI%i

and, therefore, D(A) < O. Thus_

and A and infinite error exists.

in a similar manner.

(B22)

(B23)

(B24)

(B25)

(B26)

(BET)

(B28)

D = 0 somewhere between stations 0

The other shaded areas may be analyzed
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APPENDIX C

INFINITE ERRORS IN A RECTANGULAR CONFIGURATION

For a rectangular configuration, consider figure 6. Infinite

error occurs when

D _____

Xa Ya ra - r

Xb Yb rb - r

Xc Yc rc - r

0

= Z

Z

m ra - r

m rb - r

0 r c - r

= o (ci)

L
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Thus

or

But

r + rb = ra + rc

r2 + 2rr b + rb2 = ra 2 + 2rar c + rc 2

ra 2 = r2 - 2my+ m2

(c2)

(c3)

(c4)

2 = r 2 _ 2Zx - 2my + Z2 + m 2rb (c5)

rc2 = r2 - 2Ix + Z2 (C6)

When equations (C4), (C5), and (C6) are substituted into equation (C3)

the following equations are obtained:

or

rrb = rarc (C7)

r2rb2 = ra2rc 2 (C8)
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Then, if equations (C4), (C5), and (C6) are substituted into equa-

tion (C8) there results

Im(Z - 2x)(m - 2y) : 0 (C9)

Infinite error therefore occurs if

L

1

2

3
4

or

Z
X = D

2

m
y = m

2

(ClO)

(Cil)

Thus, infinite error occurs on the planes which are perpendicular

bisectors of the sides of the rectangle.
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APPENDIX D

STATION-LOCATIONERRORS

In order to determine the errors in position due to errors in sta-

tion location, the following range differences, which follow the defini-

tions, may be examined:

Sa= _/(x-Xa)2+ (y- ya)2 + (z- Za)2 - _x2+ y2 + _.2 (DI)

_b= _(x- xb)2 + (y- yb)2 + (--- -.b)2 - _x2+ y2 + _2 (D2)

L
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Sc= _/(x- Xc)2 + (y- yc)2 + (z- zc)2 - _x2+ y2 + z2 (D3)

These equations may be interpreted as follows: Sa, Sb, and sc

are measured input quantities; Xa, Ya, and so forth are constants

depending on station locations; x, y, and z are the unknowns to be
found.

If it is assumed that exact data Sa, Sb, and sc are being

received, x, y, and z could be computed exactly if Xa, Ya, Za;

Xb' Yb' Zb; are known exactly. But if there are errors in

measuring Xa, Ya, and so forth the problem is then to find the corre-

sponding errors in x, y, and z. The procedure is to find the varia-

tions in x, y, and z due to variations in Xa, Ya, and so forth

with Sa, Sb, and sc held constant. Taking the total differential

of sa in equation (DI) and setting it equal to zero gives

ds a = 0

8s a 8s a 8s a 8s a 8s a 8s a

_Xa dx a + _ya dYa + 8z--_dZa + -_- dx + T dy + 87 dz

But,

_Sa = - ,X - X a

8X a ra

(D4)

(DS)



27

_S__ a = Z - Z a

8Z a ra

(D7)
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Substituting equations (DS), (D6), and (D7) and

_Sa _Sa bSa
_-_--, _---, and 8-_- into equation (D4) gives

ax dx + ay dy + a z dz -

ax, ay, and a z for

x - x a Y - Ya z - za

ra dx a + ra dy a + dz a (D8)ra

Similarly,

bx dx + by dy + b z dz -
x - xb Y - Yb z - zb

rb dx b + rb dyb + rb dzb (D9)

cx dx + Cy dy + cz dz - x - xc dx c + Y - Yc z - zc
rc rc dy c + rc dz c (DIO)

These equations may be interpreted as follows: dx, dy, and dz are

the errors in x, y, and z, respectively, caused by the errors dxa,

dYa, and so forth.

Solving equations (D8), (D9), and (DIO) for dx yields

Ill x - X adx = _a" dXa +

z - za \

dza Ax +

z b) (x-xc Y-Yc
Y - Yb - Zb dz Bx + dx c +

+ _b dYb + rb _c re dYe

z-zcc>xl+ _c dz C (Dll)
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The probable errors in Xa, Yb, and so forth may be expected to be

equal but uncorrelated. Thus, letting _a be the probable error in

any one of the quantities yields

OXa = OXb = OXc = _Ya = _Yb = qYc = OZa = OZb = OZc = oa (DI2)

The probable error in x is the square root of the sum of the squares

of each error term. Thus,

oa x - x a 2

Substituting equations (lO), (ll), and (12) into equation (D13) gives

_a _Ax2 Bx2 (D14)_x = -_- + + Cx2

i

2

.3
4

In a similar manner,

_:__oa{Ay2+ _2 + %2 (Ol5)

_a_A_z = -_- z2 + Bz 2 + Cz 2 (DI6)

Since

_r = q_x 2 + _y2 + _z 2

equations (DI4), (DIS), and (DI6) combine to become

(DI7)

___: _ _/Ax2+ _2 + Cx2 + Ay2+ 52 + Cy2+ Az2+ Bz2+ c2 (D18)Ga

Since the right side of equation (DI8) is identical to the right side of

equation (38),

_r
n = E
_a
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APPENDIX E

DETERMINATION OF VELOCITY
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In order to find expressions for the velocity, consider deriva-

tives with respect to time instead of differentials in equations (25),

(26), and (27) as follows:

dSa dx dy dz
- ax--+ ay--+ a z --dt dt dt dt

(El)

dSb dx dy dz
- bx -- + by -- + bz -- (E2)

dt dt dt dt

ds c

dt

dx dy dz
- Cx_y+ Cy_-f+ Cz _-f

(E3)

Solving for the x component of velocity gives

dx i {A dsa dSb dsc_- __ -- + cx (m)
dt E \x dt + Bx dt dt ]

However, differentiation of equation (7) gives

ds a

dt - (fo - fa)_ (ES)

Thus,

Vx = dXdt= _[AXEL(f° - fa) + Bx(fo - fb) + Cx( fO - fc)]

The other components may be found in a similar manner.

(E6)
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APPENDIXF

ERRORSIN VELOCITY

The error in vx causedby errors in frequency measurementis
obtained from equation (E6) (if it is assumedthat position is known
accurately) as follows:

dvx = -hE[Axd(fo - fa) + Bx d(fo - fb) + Cx d(fo - fc)_ (FI)

Nowif it is assumedthat the probable errors g(fo - fa),
_(fo - fb), and _(fo - fc) are all independent and equal to _f,
the equation maybe written

vx : _ ofqAx2 + Bx2 + Cx2
E

(F2)

Similarly,

Vy = h_ _f_Ay21- + BY 2 + C
2

E Y

of_Az 2 + Bz 2 + Cz2
V z =

(F3)

(F4)

The probable error in _ is then

kofIA 2 Ay2 By2 2 + A 2_v = 7" x + Bx 2 + Cx 2 + + + Cy z
+ Bz2+ Cz2 (FS)

Thus_

ov = heof
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PO

Figure i,- Two stations of a graphical three-station solution.

S

Figure 2.- Graphical four-station solution.
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Figure 3.- Geometry of a four-station system.
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0

Figure 4.- Vector diagram illustrating identity (B6).

then -Sb - i.

Sa + S c

If B lies on AC,
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Sa>O
Sb<O
Sc<O

Sa< 0 -
Sb<O
Sc>O

Sa<O
Sb > 0
Sc<O

ro

.,,#_

Figure 5.- Illustration of triangle rule of infinite error. When sta-

tion 0 lies in the shaded regions, infinite error exists; otherwise
no infinite error exists.

Y

A

m

0

error occurs

in these vertical planes

_B
I

I
I
I

I
I

I
I

I

J

C
X

Figure 6.- Rectangular configuration showing planes of infinite error.
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(a) Altitude, 50,000 feet. (b) Altitude, 150,000 feet.

(c) Altitude, 500,000 feet. (d) Altitude, 1,000,000 feet.

Figure 7-- Error-factor contour plots for equilateral-triangle configu-

ration. Radii of charts_ i x 106 feet.
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(a) Altitude, 50,000 feet. (b) Altitude, 150,000 feet.

(c) Altitude, 500,000 feet. (d) Altitude, 1,000,000 feet.

Figure 8.- Error-factor contour plots for isosceles-triangle configura-

tion. Radii of charts, I x 106 feet.
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(a) Altitude, 50,000 feet. (b) Altitude, 150,000 feet.

(c) Altitude, 500,000 feet. (d) Altitude, 1,000,000 feet.

Figure 9-- Error-factor contour plots for particular configuration.

Radii of charts, 1 x l06 feet. Coordinates of stations in

1,000 feet (origin at Wallops Island, Va.): station A, Dover, Del.

(-80, 454, -5); station B, Langley Field, Va. (-207, -310, -3);

station C, Hatteras, N.C. (97, -940, -21).
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(a) Altitude, 50,000 feet.

?o \ \

(b) Altitude 3 150,000 feet.

oo

N

(c) Altitude, 500,000 feet.
(d) Altitude, 1,000,O00 feet.

Figure lO.- Propagation-error-factor contour plots for equilateral-

triangle configuration. Radii of charts, 1 × lO 6 feet.






